MATH 303 — Measures and Integration
Homework 12

Problem 1. Let (X, B) be a measurable space.

(a) Let p,v,p: B —[0,00] be o-finite measures, and suppose p < v < p. Prove the “chain rule”

dp _ dpdv
dp  dv d,u
(b) Suppose p,v are finite (posmve) measures on (X,B), and p ~ v. Show that the Radon-
Nikodym derivative f = satlsﬁes 0< f < oo p-a.e., and “ = % v-a.e.
Solution: (a) Let f = dz/ £ and g = %. We want to show & d = fg. Let E € B. Then

E)@/fdv(ﬁ)/fgdu,
E E

where in the equality (*) we have used the definition of the Radon—-Nikodym derivative %p/ and
in () we have used Proposition 10.16. Thus, dp = fg du as desired.

(b) Let f = Q Then by (a), 1 = d—” =f-3 d—“ In order for this product of two nonnegative
extended real numbers to be 1, we must have () < f < oo a.e. and d“ = }lc a.e.

Problem 2. Let (X, B) be a measurable space.

(a) Let p: B — [—00,00] be a signed measure, and let |u| be the total variation measure. Show
that p < |p| and describe the Radon—Nikodym derivative %.

(b) Suppose p: B — C is a complex measure. Define the total variation measure |u| by

|ul(E —Sup{zm B = |_|En}

neN

for E € B. Suppose v is a o-finite positive measure on (X, B) such that y < v. (For example,
applying the Jordan decomposition theorem to the real and imaginary parts of p and writing
=11 —va+i(v3—ry) as a combination of positive finite measures, one can take v = Z?Zl vj.)

g—’;‘ a.e. Conclude that there exists a measurable

function 6 : X — [0, 1) such that d‘ ‘( z) = 200 for |pl-ae. z € X.

d
Prove that |u| is a measure and |“| =

Solution: (a) Let u = pu* — = be the Jordan decomposition of u so that |u| = p* +p~. If
|11 (0), then p*(0) = u=(0) = 0, so u(0) = 0. Therefore, u < |pu|.
We claim that the Radon—Nikodym derivative of p with respect to |u| is given by

=1p— 1y,
d|pl




where (P, N) is a Hahn decomposition of u. Indeed, for any E € B,
WE)=wENP)+u(ENN) =[ul(ENP)—|u(ENN) = [E(ﬂp — 1n) dlpl.

(b) Let f = 2. We will show

(B / £l dv
d\u\ dp

for E' € B, which establishes simultaneously that |u| is a measure and that = ‘E‘ a.e.

Suppose E = | |,y En. Then by the triangle inequality for integrals and Theorem 3.12,

i::lW(En)! Z/ v < Z/ o= [ 1 ae

n=1
Thus, taking a supremum over all countable measurable partitions of E, we have

/ f] dv > |ul(E).
FE

To prove the reverse inequality, we will partition F into portions where the values of
f belong to a thin radial slice. Let © : C — [0,1) be the function such that ©(0) = 0 and
z= |z|e2m@(z) for z # 0. Fix N € N, and partition C into N radial slices Iy, = O~ ([%, ”TH))
for0<n<N-—1. If @ = e 270 with & <0 < "+1 ,and z € In g, then

‘ , 2
oz = [2l] = |22 O — 2| < |2 eV — 1| < T,

Let Enyn, = EN{f € Inn}. Then letting ay, be such that ay, fEm{feIN }f dv =

we have
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Since f € L'(v), this quantity tends to zero as N — oo. Hence, [, |f| dv < |u|(E).

Now that we have established that |u| is a measure, we may take v = |u| to conclude
du | _ dpl - — dp du _ 2mif
‘dm\ = du = 1. Then putting § = © o ) e have du] = € a.e.




