
MATH 303 – Measures and Integration
Homework 12

Problem 1. Let (X,B) be a measurable space.

(a) Let µ, ν, ρ : B → [0,∞] be σ-finite measures, and suppose ρ ≪ ν ≪ µ. Prove the “chain rule”

dρ

dµ
=

dρ

dν

dν

dµ
.

(b) Suppose µ, ν are finite (positive) measures on (X,B), and µ ≈ ν. Show that the Radon–
Nikodym derivative f = dν

dµ satisfies 0 < f < ∞ µ-a.e., and dµ
dν = 1

f ν-a.e.

Solution: (a) Let f = dρ
dν and g = dν

dµ . We want to show dρ
dµ = fg. Let E ∈ B. Then

ρ(E)
(∗)
=

∫
E
f dν

(∗∗)
=

∫
E
fg dµ,

where in the equality (∗) we have used the definition of the Radon–Nikodym derivative dρ
dν and

in (∗∗) we have used Proposition 10.16. Thus, dρ = fg dµ as desired.

(b) Let f = dν
dµ . Then by (a), 1 = dν

dν = f · dµdν . In order for this product of two nonnegative

extended real numbers to be 1, we must have 0 < f < ∞ a.e. and dµ
dν = 1

f a.e.

Problem 2. Let (X,B) be a measurable space.

(a) Let µ : B → [−∞,∞] be a signed measure, and let |µ| be the total variation measure. Show
that µ ≪ |µ| and describe the Radon–Nikodym derivative dµ

d|µ| .

(b) Suppose µ : B → C is a complex measure. Define the total variation measure |µ| by

|µ|(E) = sup

{ ∞∑
n=1

|µ(En)| : E =
⊔
n∈N

En

}

for E ∈ B. Suppose ν is a σ-finite positive measure on (X,B) such that µ ≪ ν. (For example,
applying the Jordan decomposition theorem to the real and imaginary parts of µ and writing
µ = ν1−ν2+ i(ν3−ν4) as a combination of positive finite measures, one can take ν =

∑4
j=1 νj .)

Prove that |µ| is a measure and d|µ|
dν =

∣∣∣dµdν ∣∣∣ a.e. Conclude that there exists a measurable

function θ : X → [0, 1) such that dµ
d|µ|(x) = e2πiθ(x) for |µ|-a.e. x ∈ X.

Solution: (a) Let µ = µ+ − µ− be the Jordan decomposition of µ so that |µ| = µ+ + µ−. If
|µ|(0), then µ+(0) = µ−(0) = 0, so µ(0) = 0. Therefore, µ ≪ |µ|.

We claim that the Radon–Nikodym derivative of µ with respect to |µ| is given by

dµ

d|µ|
= 1P − 1N ,



where (P,N) is a Hahn decomposition of µ. Indeed, for any E ∈ B,

µ(E) = µ(E ∩ P ) + µ(E ∩N) = |µ|(E ∩ P )− |µ|(E ∩N) =

∫
E
(1P − 1N ) d|µ|.

(b) Let f = dµ
dν . We will show

|µ|(E) =

∫
E
|f | dν

for E ∈ B, which establishes simultaneously that |µ| is a measure and that d|µ|
dν =

∣∣∣dµdν ∣∣∣ a.e.
Suppose E =

⊔
n∈NEn. Then by the triangle inequality for integrals and Theorem 3.12,

∞∑
n=1

|µ(En)| =
∞∑
n=1

∣∣∣∣∫
En

f dν

∣∣∣∣ ≤ ∞∑
n=1

∫
En

|f | dν =

∫
E
|f | dν.

Thus, taking a supremum over all countable measurable partitions of E, we have∫
E
|f | dν ≥ |µ|(E).

To prove the reverse inequality, we will partition E into portions where the values of
f belong to a thin radial slice. Let Θ : C → [0, 1) be the function such that Θ(0) = 0 and
z = |z|e2πiΘ(z) for z ̸= 0. FixN ∈ N, and partition C intoN radial slices IN,n = Θ−1

([
n
N , n+1

N

))
for 0 ≤ n ≤ N − 1. If α = e−2πiθ with n

N ≤ θ < n+1
N , and z ∈ IN,n, then

|αz − |z|| =
∣∣∣|z|e2πi(Θ(z)−θ) − |z|

∣∣∣ ≤ |z|
∣∣∣e2πi/N − 1

∣∣∣ ≤ 2π

N
|z|.

Let EN,n = E ∩ {f ∈ IN,n}. Then letting αN,n be such that αN,n

∫
E∩{f∈IN,n} f dν =∣∣∣∫E∩{f∈IN,n} f dν

∣∣∣, we have

∫
E
|f | dν −

N−1∑
n=0

|µ(EN,n)| =
N−1∑
n=0

(∫
E∩{f∈IN,n}

|f | dν −

∣∣∣∣∣
∫
E∩{f∈IN,n}

f dν

∣∣∣∣∣
)

=
N−1∑
n=0

(∫
E∩{f∈IN,n}

|f | dν −
∫
E∩{f∈IN,n}

αN,nf dν

)

≤
N−1∑
n=0

∫
E∩{f∈IN,n}

||f | − αN,nf | dν

≤
N−1∑
n=0

∫
E∩{f∈IN,n}

2π

N
|f | dν

=
2π

N

∫
E
|f | dν.



Since f ∈ L1(ν), this quantity tends to zero as N → ∞. Hence,
∫
E |f | dν ≤ |µ|(E).

Now that we have established that |µ| is a measure, we may take ν = |µ| to conclude∣∣∣ dµ
d|µ|

∣∣∣ = d|µ|
d|µ| = 1. Then putting θ = Θ ◦ dµ

d|µ| , we have dµ
d|µ| = e2πiθ a.e.


